Tricyclic and Tetracyclic Graphs with Maximum and Minimum Eccentric Connectivity
Authors
Abstract:
Let $G$ be a connected graph on $n$ vertices. $G$ is called tricyclic if it has $n + 2$ edges, and tetracyclic if $G$ has exactly $n + 3$ edges. Suppose $mathcal{C}_n$ and $mathcal{D}_n$ denote the set of all tricyclic and tetracyclic $n-$vertex graphs, respectively. The aim of this paper is to calculate the minimum and maximum of eccentric connectivity index in $mathcal{C}_n$ and $mathcal{D}_n$.
similar resources
Eccentric Connectivity Index: Extremal Graphs and Values
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
full texteccentric connectivity index: extremal graphs and values
eccentric connectivity index has been found to have a low degeneracy and hence a significantpotential of predicting biological activity of certain classes of chemical compounds. wepresent here explicit formulas for eccentric connectivity index of various families of graphs.we also show that the eccentric connectivity index grows at most polynomially with thenumber of vertices and determine the ...
full textEccentric Connectivity Index of Some Dendrimer Graphs
The eccentricity connectivity index of a molecular graph G is defined as (G) = aV(G) deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to other vertices of G and deg(a) is degree of vertex a. Here, we compute this topological index for some infinite classes of dendrimer graphs.
full textTricyclic graphs with maximum Merrifield-Simmons index
It is well known that the graph invariant, ‘the Merrifield–Simmons index’ is important one in structural chemistry. The connected acyclic graphs with maximal and minimal Merrifield–Simmons indices are determined by Prodinger and Tichy [H. Prodinger, R.F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982) 16–21]. The sharp upper and lower bounds for theMerrifield–Simmons indices of u...
full texteccentric connectivity index of some dendrimer graphs
the eccentricity connectivity index of a molecular graph g is defined as (g) = av(g)deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to othervertices of g and deg(a) is degree of vertex a. here, we compute this topological index forsome infinite classes of dendrimer graphs.
full textEccentric connectivity index: extremal graphs and values
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
full textMy Resources
Journal title
volume 11 issue None
pages 137- 143
publication date 2016-04
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023